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Introduction 

 

Malicious code (also called malware) has become increasingly sophisticated since the 

time the first virus surfaced in the wild around 1980. Malware such as viruses and worms 

attack are troublesome, yet they are generally easy to detect and eradicate once they 

infect a system. Viruses and worms also largely (but not exclusively) target Windows 

systems, largely leaving other types of systems alone. Other types of malware started to 

pose a proportionately greater degree of security threat several years ago when the allure 

and utility of writing and releasing viruses and worms started to fade because malware 

writers started to deploy more surreptitious malware because they become increasingly 

motivated by financial gain (SCHU06). Rootkits, in contrast, are designed to help 

attackers escape being noticed; they have, therefore, in particular proven much more 

troublesome than other types of malicious code. Rootkits are becoming so prevalent that 

to refer to the rootkit problem as an ―epidemic‖ is becoming increasingly appropriate. 

This paper defines rootkits, explains how they work, explicates why they are likely to 

become even more prevalent, and wrestles with the issue of whether the war against 

rootkits will ever be won and if so, how.   

  

What is a Rootkit? 

 

A rootkit is a type of Trojan horse tool that if installed on a host modifies the hosts’ 

operating system in a manner such that evidence of attackers’ actions (including initial 

accesses to the systems and changes to the system made during installation of the 

program) are hidden. Attackers who have installed a rootkit can also generally use the 

rootkit to achieve remote back door access to the host at will. Rootkits often swap system 

programs and libraries with versions that look normal, but that in reality compromise the 

integrity of the victim host.  

 

Two types of rootkits exist, user-mode and kernel-mode rootkits.  

 

 User-mode rootkits substitute executables and system libraries that system 

administrators and users use. Changes that are made are systematically obfuscated 

such that if a system administrator lists a directory containing binaries of which 

one has been changed by the rootkit, no signs such as changes in last modification 

time and file size are displayed.  

 

 Kernel-mode rootkits change parts of the kernel of the compromised host’s 

operating system or may also even replace the kernel with an entirely new one. 

Process and other listings as well as in some cases kernel data structures are 

changed to hide kernel-related processes and other indications of the presence of 

the rootkit. In kernel-mode rootkits program execution flow is also frequently 

redirected so that instructions of the rootkit writer’s choice, not normal ones, are 



run in memory. Because many Linux and Unix systems have Loadable Kernel 

Modules (LKMs) that allow kernel functions to be modified without the need to 

edit the kernel, these systems have heightened vulnerability to kernel-level 

rootkits. Needless to say, kernel-level rootkits pose greater security risk than do 

user-level rootkits.  

 

A good way to view the functionality and effects of user- and kernel-mode rootkits is to 

consider the rings of Intel x86 processors. Ring 3 is where unprivileged user-level 

instructions are run. In Ring 0 only privileged instructions can be run. User-mode rootkits 

run in Ring 3, whereas kernel-mode rootkits run in Ring 0 (see Figure 1 below).  

 

 

 
 

Figure 1 – Rings 0 and 3 in Intel x86 Processor Architectures 

 

How Rootkits Work 

 

As discussed by Shah (SHAH06), rootkits work in a variety of ways: 

 

 Modifying kernel data structures. Modifying data structures, particularly the ones 

that list currently running processes, is commonplace part of rootkit functionality 

because modifying them goes far in masquerading the presence of a rootkit when 

system administrators and users enter commands that display processes.  

 

 Modifying kernel memory. In Unix and Linux hosts /dev/mem is the file 

containing the kernel's memory image. Kernel-level rootkits access this file and 

then use it to edit the kernel in some manner such as swapping the system call 

table with a new version that executes malicious instructions. Modifying kernel 

memory has certain inherent dangers, however—one mistake can render a system 

completely dysfunctional. Additionally, any changes made are lost if the system is 

rebooted.   

 

 Subverting virtual memory. Subversion of virtual memory is another mechanism 

that rootkits often use. The goal is often limiting what commands, applications, 

and kernel drivers are able to read from memory so that rootkit-caused changes 

and processes cannot be detected.  
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 Bypassing normal system call sequences. System call sequences are another 

frequent target of rootkits. A rootkit can either alter entries in the system call table 

to run malicious instructions or can alter the system call hander code itself to 

cause initial instructions to modify the execution flow by jumping to the rootkit 

call handler code.  

 

 Altering interrupt handling. A rootkit can also alter interrupt handling, often by 

changing the interrupt descriptor table (IDT) so that the IDT entry containing the 

interrupt handler address runs rootkit instructions. Alternatively, a rootkit may 

change the interrupt handler code itself, usually by altering the first few 

instructions.   

 

 Intercepting virtual file system calls. Some rootkits intercept virtual file system 

calls by swapping handler routines with new ones that conceal and/or filter 

information that might indicate the presence of a rootkit. 
 

Prevalence of Rootkits 
 

How prevalent are rootkits? It is difficult to obtain accurate statistics concerning rootkit 

prevalence because of the extreme difficulty to identifying rootkits. Despite this barrier, 

various statistics concerning rootkit prevalence have emerged over the last few years. 

Without exception they show a growth in the number of rootkits discovered in real-world 

settings. In 2006 Trend Micro found that the number of reported rootkits increased during 

that year and that rootkits were the most frequently found type of malware (TREN06).  

McAfee Labs has announced similar results, reporting that the number of rootkits given 

to these labs from the first quarter of 2005 to the first quarter of 2006 increased by nearly 

700 percent. Additionally, McAfee has reported that the number of Windows-based 

stealth elements in malicious code grew 2300 percent from 2001 to 2005. Microsoft 

researchers also conducted a study in which they compared the number of rootkits found 

on Windows systems over a 15-month period (MICR06). They reported that the number 

of rootkits that were found increased over this period, although they credited the creation 

and use of the Microsoft Malicious Software Removal Tool for limiting the spread of 

rootkits. They also reported that although roughly 14 percent of the systems that were 

infected with some kind of malware had rootkits installed, although it is likely that this 

figure grossly underestimates the prevalence of rootkits—Microsoft’s study included 

only Windows 2000, pre-SP2 versions of Windows XP, and Windows Server 2003 hosts. 

For some reason, Microsoft did not analyze hosts running SP2 versions of Windows XP, 

the by far most prevalently used versions of Windows operating systems at the time.  

 

What particular rootkits are most prevalent? As would be expected because of the sheer 

prevalence of Windows systems, there are more Windows-based rootkits in the wild than 

any other type. Trend Micro has reported that the TROJ_ROOTKIT variant, one that runs 

in Windows systems, is the most frequently found family of rootkits (TREN06). These 

rootkits cover up indications that processes are running and other signs of the presence of 

malware by altering assigned functions in NTOSKRNL.EXE, the file on Windows 



systems that is used in controlling a variety of kernel functions. They are often inserted in 

the Windows folder as .SYS files and then are registered as a service. Panda software 

recently announced that the most prevalent rootkits found in the wild are Beagle.FU and 

Adware/NaviPromo (BUST07). According to Panda, these two types of rootkits comprise 

almost 64 percent of all detected rootkits. Beagle.FU, of which there are many variants, 

targets Windows hosts. It is a kernel-mode rootkit that hides processes that run by 

altering kernel data structures. It also unlinks EPROCESS blocks (which are used in 

starting processes in Windows systems) from the list of active processes in the kernel. 

NaviPromo also targets Windows hosts and is in reality adware. Adware/NaviPromo 

copies itself into the system folder with the name mstmpreg32.dll, runs explorer.exe, 

inserts itself in the explorer.exe process, and deletes the original explorer.exe file. This 

rootkit also creates several .exe files and then adds them to the Windows folder. Finally, 

it uses MSClock32.dll to kill the functionality of certain system functions that could 

otherwise result in detection of this rootkit.  

 

The Future of Rootkits 

 

A number of factors greatly increase the probability that rootkits will become even more 

prevalent over time. These include: 

 

 The sheer number of vulnerabilities in hosts that connect to the Internet and the 

rate at which these vulnerabilities surface. Rootkits do not exploit vulnerabilities. 

To install a rootkit, an attacker must first exploit a vulnerability to gain access to 

the targeted system and often must exploit another to gain superuser access such 

as root access on Unix and Linux hosts. Vulnerabilities are surfacing at an 

unprecedented rate; many of them are zero-day vulnerabilities. It is thus nearly 

impossible to keep hosts and applications properly patched; in fact, many 

organizations and individuals do not even try. This creates a target rich 

environment for rootkits; the same will be even more true in the future when 

vulnerabilities surface at an even faster rate if the present trend continues.  

 

 Web, chat and instant messaging collaboration among rootkit writers. Writing a 

rootkit requires a very high level of programming proficiency. However, the 

widespread availability of collaborative methods that enable rootkit writers who 

cannot leap one or more hurdles in authoring a new rootkit greatly compensates 

for any lack of programming proficiency.  

 

 The creation, proliferation and distribution of highly effective rootkits. Rootkits 

have grown considerably in both number and sophistication from year-to-year.  

Some of them are nearly impossible to detect, even by the most proficient 

technical staff. Obtaining rootkits has on the other hand also become increasingly 

easy to the point where even an amateur perpetrator can readily download and 

install highly effective rootkits. Rootkits of the future will almost certainly 

include considerably more functionality, making them even more difficult to 

detect.  

 



 Lack of tools that effectively detect and eradicate rootkits. AUSCERT, the 

Australian CERT Team, found that commonly used anti-virus software fails to 

detect up to 80 percent of Trojan horse programs that reside in systems. This 

finding is easy to explain; anti-virus software is designed more than anything else 

to discover viruses and worms by using signatures. But signature-based detection, 

rootkit tools very much included, is much less likely to work when malware is 

purposefully clandestine. Furthermore, rootkits are much more surreptitious than 

are ―normal‖ Trojan programs. The inescapable conclusion, therefore, is that any 

statistics concerning the prevalence of rootkits must almost certainly seriously 

underestimate the actual prevalence of this type of malware. Tools specifically 

designed to detect rootkits (such as chkrootkit in Linux and Rootkit Revealer in 

Windows systems) are generally somewhat better in their detection rates than is 

anti-virus software, but they nevertheless miss a substantial proportion of rootkits 

in systems.  

 

 Lack of privilege control in widely used systems and applications. As mentioned 

previously, rootkit installation requires superuser privileges. The fact that such a 

large proportion of users as well as system administrators who engage in 

computing functions not related to system management (e.g., Web surfing) 

engage in these activities with superuser privileges makes their hosts much more 

conducive to being infected by rootkits when they visit malicious Web sites, are 

infected by viruses and worms, and so on.   

 

 The incorporation of rootkit functionality into spyware. Spyware routinely makes 

its way into hosts, particularly Windows hosts; no anti-spyware tools are 

anywhere near being 100 percent effective in preventing spyware infections. An 

increasing number of spyware programs are incorporating rootkit functionality, 

thereby not only infecting systems, but also hiding any evidence of an infection 

and any malicious activities such as capturing all traffic that goes in and out of the 

victim host. The likely result of this trend is once again for rootkits to become 

more prevalent over time.   

 

 Lack of security knowledge among system administrators and users. Lack of 

security knowledge among system administrators and users will also contribute to 

the target-rich environment that will help rootkits to become even more prevalent 

than they are now.  
 

Is there Hope in the Fight against Rootkits? 

 

Is there hope in the fight against rootkits? The answer is ―maybe,‖ but definitely ―no‖ if 

the fight against rootkits continues to keep going in the direction it has gone until now. 

Simply put, anti-rootkit technology has not kept pace with the sophistication of rootkits. 

If this trend continues the gap between what is needed in this fight and the capabilities of 

rootkits will continue to grow larger. Rootkit detection and eradication tools are almost 

without exception not up to the task. Signature-based tools are most inadequate, but even 

more effective tools suffer from the problem that they must run on systems in which the 



integrity of the processes and files that these tools must examine may possibly be 

compromised.  

 

One potential future technology solution that has been widely considered is running 

rootkit detection and eradication processes in a virtual environment that cannot be 

affected by any rootkit. In theory this is a brilliant solution, but in reality rootkits can 

even subvert the integrity of virtual environments. Joanna Rutkowska has developed what 

she has termed a completely undetectable rootkit (called ―Blue Pill‖) that evades the 

Vista operating system’s integrity-checking during loading unsigned code into the Vista 

kernel using AMD’s secure virtual machine to conceal itself (RUTK06),. Even virtual 

machines and environments are subject to rootkit-causes integrity compromises; their 

potential value in detecting and eradicating rootkits thus appears to be limited.  

 

The best rootkit detection and eradication solution to date is hardware-based. Komoku 

has produced a rootkit detection product, the Copilot PCI Card™, a PCI card that has its 

own CPU and memory. It inspects the physical memory of systems that are potentially 

compromised by rootkits. Because it has its own CPU and memory, its processes cannot 

potentially be affected by a rootkit’s subversive mechanisms. The main limitation to this 

solution presently is the financial cost, which is high. Hopefully, in time the cost will 

come down, as typically has happened with other new technologies.  
 

Another promising and more cost-effective solution that is considerably better than most 

detection and eradication solutions available today and that is likely to become even 

better in time is Security Event Management (SEM) technology. SEM tools use 

sophisticated event correlation algorithms to identify symptoms of a rootkit infection as 

are visible on the network. Rootkits may be able to hide themselves on hosts, but they at 

various times give indications of their presence on the network, e.g, when the attacker 

who installed the rootkit gains backdoor access to the rootkit.  Indications such a certain 

port on a rootkit-compromised host temporarily listening for input and the presence of 

encrypted traffic between an internal and external host after the initial traffic between the 

hosts was unencrypted can provide enough information for a SEM’s event correlation 

algorithms to detect the presence of a rootkit.  

 

Ultimately, however, the best solution is to build rootkit resistant mechanisms directly 

into operating systems and applications. Add-on solutions such as rootkit detection and 

eradication tools are invariably less effective than are ones that are built-in from the start. 

Operating systems in particular should recognize and halt attempts to engage in integrity-

compromising actions such as those that result in modification of critical kernel data 

structures. It is well time for operating system and application vendors to wake up to the 

fact that they hold the real key in the fight against rootkits and other kinds of malware.  
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