
MEGAMIND

The Rootkit Epidemic
E. Eugene Schultz, Ph.D., CISSP, CISM

Introduction

Malicious code (also called malware) has become increasingly sophisticated since the

time the first virus surfaced in the wild around 1980. Malware such as viruses and worms

attack are troublesome, yet they are generally easy to detect and eradicate once they

infect a system. Viruses and worms also largely (but not exclusively) target Windows

systems, largely leaving other types of systems alone. Other types of malware started to

pose a proportionately greater degree of security threat several years ago when the allure

and utility of writing and releasing viruses and worms started to fade because malware

writers started to deploy more surreptitious malware because they become increasingly

motivated by financial gain (SCHU06). Rootkits, in contrast, are designed to help

attackers escape being noticed; they have, therefore, in particular proven much more

troublesome than other types of malicious code. Rootkits are becoming so prevalent that

to refer to the rootkit problem as an ―epidemic‖ is becoming increasingly appropriate.

This paper defines rootkits, explains how they work, explicates why they are likely to

become even more prevalent, and wrestles with the issue of whether the war against

rootkits will ever be won and if so, how.

What is a Rootkit?

A rootkit is a type of Trojan horse tool that if installed on a host modifies the hosts’

operating system in a manner such that evidence of attackers’ actions (including initial

accesses to the systems and changes to the system made during installation of the

program) are hidden. Attackers who have installed a rootkit can also generally use the

rootkit to achieve remote back door access to the host at will. Rootkits often swap system

programs and libraries with versions that look normal, but that in reality compromise the

integrity of the victim host.

Two types of rootkits exist, user-mode and kernel-mode rootkits.

 User-mode rootkits substitute executables and system libraries that system

administrators and users use. Changes that are made are systematically obfuscated

such that if a system administrator lists a directory containing binaries of which

one has been changed by the rootkit, no signs such as changes in last modification

time and file size are displayed.

 Kernel-mode rootkits change parts of the kernel of the compromised host’s

operating system or may also even replace the kernel with an entirely new one.

Process and other listings as well as in some cases kernel data structures are

changed to hide kernel-related processes and other indications of the presence of

the rootkit. In kernel-mode rootkits program execution flow is also frequently

redirected so that instructions of the rootkit writer’s choice, not normal ones, are

run in memory. Because many Linux and Unix systems have Loadable Kernel

Modules (LKMs) that allow kernel functions to be modified without the need to

edit the kernel, these systems have heightened vulnerability to kernel-level

rootkits. Needless to say, kernel-level rootkits pose greater security risk than do

user-level rootkits.

A good way to view the functionality and effects of user- and kernel-mode rootkits is to

consider the rings of Intel x86 processors. Ring 3 is where unprivileged user-level

instructions are run. In Ring 0 only privileged instructions can be run. User-mode rootkits

run in Ring 3, whereas kernel-mode rootkits run in Ring 0 (see Figure 1 below).

Figure 1 – Rings 0 and 3 in Intel x86 Processor Architectures

How Rootkits Work

As discussed by Shah (SHAH06), rootkits work in a variety of ways:

 Modifying kernel data structures. Modifying data structures, particularly the ones

that list currently running processes, is commonplace part of rootkit functionality

because modifying them goes far in masquerading the presence of a rootkit when

system administrators and users enter commands that display processes.

 Modifying kernel memory. In Unix and Linux hosts /dev/mem is the file

containing the kernel's memory image. Kernel-level rootkits access this file and

then use it to edit the kernel in some manner such as swapping the system call

table with a new version that executes malicious instructions. Modifying kernel

memory has certain inherent dangers, however—one mistake can render a system

completely dysfunctional. Additionally, any changes made are lost if the system is

rebooted.

 Subverting virtual memory. Subversion of virtual memory is another mechanism

that rootkits often use. The goal is often limiting what commands, applications,

and kernel drivers are able to read from memory so that rootkit-caused changes

and processes cannot be detected.

Ring 3 –
unprivileged,
user
instructions
allowed
(user-mode
rootkits)

Ring 0 – only
privileged
instructions
allowed
(kernel-mode
rootkits)

 Bypassing normal system call sequences. System call sequences are another

frequent target of rootkits. A rootkit can either alter entries in the system call table

to run malicious instructions or can alter the system call hander code itself to

cause initial instructions to modify the execution flow by jumping to the rootkit

call handler code.

 Altering interrupt handling. A rootkit can also alter interrupt handling, often by

changing the interrupt descriptor table (IDT) so that the IDT entry containing the

interrupt handler address runs rootkit instructions. Alternatively, a rootkit may

change the interrupt handler code itself, usually by altering the first few

instructions.

 Intercepting virtual file system calls. Some rootkits intercept virtual file system

calls by swapping handler routines with new ones that conceal and/or filter

information that might indicate the presence of a rootkit.

Prevalence of Rootkits

How prevalent are rootkits? It is difficult to obtain accurate statistics concerning rootkit

prevalence because of the extreme difficulty to identifying rootkits. Despite this barrier,

various statistics concerning rootkit prevalence have emerged over the last few years.

Without exception they show a growth in the number of rootkits discovered in real-world

settings. In 2006 Trend Micro found that the number of reported rootkits increased during

that year and that rootkits were the most frequently found type of malware (TREN06).

McAfee Labs has announced similar results, reporting that the number of rootkits given

to these labs from the first quarter of 2005 to the first quarter of 2006 increased by nearly

700 percent. Additionally, McAfee has reported that the number of Windows-based

stealth elements in malicious code grew 2300 percent from 2001 to 2005. Microsoft

researchers also conducted a study in which they compared the number of rootkits found

on Windows systems over a 15-month period (MICR06). They reported that the number

of rootkits that were found increased over this period, although they credited the creation

and use of the Microsoft Malicious Software Removal Tool for limiting the spread of

rootkits. They also reported that although roughly 14 percent of the systems that were

infected with some kind of malware had rootkits installed, although it is likely that this

figure grossly underestimates the prevalence of rootkits—Microsoft’s study included

only Windows 2000, pre-SP2 versions of Windows XP, and Windows Server 2003 hosts.

For some reason, Microsoft did not analyze hosts running SP2 versions of Windows XP,

the by far most prevalently used versions of Windows operating systems at the time.

What particular rootkits are most prevalent? As would be expected because of the sheer

prevalence of Windows systems, there are more Windows-based rootkits in the wild than

any other type. Trend Micro has reported that the TROJ_ROOTKIT variant, one that runs

in Windows systems, is the most frequently found family of rootkits (TREN06). These

rootkits cover up indications that processes are running and other signs of the presence of

malware by altering assigned functions in NTOSKRNL.EXE, the file on Windows

systems that is used in controlling a variety of kernel functions. They are often inserted in

the Windows folder as .SYS files and then are registered as a service. Panda software

recently announced that the most prevalent rootkits found in the wild are Beagle.FU and

Adware/NaviPromo (BUST07). According to Panda, these two types of rootkits comprise

almost 64 percent of all detected rootkits. Beagle.FU, of which there are many variants,

targets Windows hosts. It is a kernel-mode rootkit that hides processes that run by

altering kernel data structures. It also unlinks EPROCESS blocks (which are used in

starting processes in Windows systems) from the list of active processes in the kernel.

NaviPromo also targets Windows hosts and is in reality adware. Adware/NaviPromo

copies itself into the system folder with the name mstmpreg32.dll, runs explorer.exe,

inserts itself in the explorer.exe process, and deletes the original explorer.exe file. This

rootkit also creates several .exe files and then adds them to the Windows folder. Finally,

it uses MSClock32.dll to kill the functionality of certain system functions that could

otherwise result in detection of this rootkit.

The Future of Rootkits

A number of factors greatly increase the probability that rootkits will become even more

prevalent over time. These include:

 The sheer number of vulnerabilities in hosts that connect to the Internet and the

rate at which these vulnerabilities surface. Rootkits do not exploit vulnerabilities.

To install a rootkit, an attacker must first exploit a vulnerability to gain access to

the targeted system and often must exploit another to gain superuser access such

as root access on Unix and Linux hosts. Vulnerabilities are surfacing at an

unprecedented rate; many of them are zero-day vulnerabilities. It is thus nearly

impossible to keep hosts and applications properly patched; in fact, many

organizations and individuals do not even try. This creates a target rich

environment for rootkits; the same will be even more true in the future when

vulnerabilities surface at an even faster rate if the present trend continues.

 Web, chat and instant messaging collaboration among rootkit writers. Writing a

rootkit requires a very high level of programming proficiency. However, the

widespread availability of collaborative methods that enable rootkit writers who

cannot leap one or more hurdles in authoring a new rootkit greatly compensates

for any lack of programming proficiency.

 The creation, proliferation and distribution of highly effective rootkits. Rootkits

have grown considerably in both number and sophistication from year-to-year.

Some of them are nearly impossible to detect, even by the most proficient

technical staff. Obtaining rootkits has on the other hand also become increasingly

easy to the point where even an amateur perpetrator can readily download and

install highly effective rootkits. Rootkits of the future will almost certainly

include considerably more functionality, making them even more difficult to

detect.

 Lack of tools that effectively detect and eradicate rootkits. AUSCERT, the

Australian CERT Team, found that commonly used anti-virus software fails to

detect up to 80 percent of Trojan horse programs that reside in systems. This

finding is easy to explain; anti-virus software is designed more than anything else

to discover viruses and worms by using signatures. But signature-based detection,

rootkit tools very much included, is much less likely to work when malware is

purposefully clandestine. Furthermore, rootkits are much more surreptitious than

are ―normal‖ Trojan programs. The inescapable conclusion, therefore, is that any

statistics concerning the prevalence of rootkits must almost certainly seriously

underestimate the actual prevalence of this type of malware. Tools specifically

designed to detect rootkits (such as chkrootkit in Linux and Rootkit Revealer in

Windows systems) are generally somewhat better in their detection rates than is

anti-virus software, but they nevertheless miss a substantial proportion of rootkits

in systems.

 Lack of privilege control in widely used systems and applications. As mentioned

previously, rootkit installation requires superuser privileges. The fact that such a

large proportion of users as well as system administrators who engage in

computing functions not related to system management (e.g., Web surfing)

engage in these activities with superuser privileges makes their hosts much more

conducive to being infected by rootkits when they visit malicious Web sites, are

infected by viruses and worms, and so on.

 The incorporation of rootkit functionality into spyware. Spyware routinely makes

its way into hosts, particularly Windows hosts; no anti-spyware tools are

anywhere near being 100 percent effective in preventing spyware infections. An

increasing number of spyware programs are incorporating rootkit functionality,

thereby not only infecting systems, but also hiding any evidence of an infection

and any malicious activities such as capturing all traffic that goes in and out of the

victim host. The likely result of this trend is once again for rootkits to become

more prevalent over time.

 Lack of security knowledge among system administrators and users. Lack of

security knowledge among system administrators and users will also contribute to

the target-rich environment that will help rootkits to become even more prevalent

than they are now.

Is there Hope in the Fight against Rootkits?

Is there hope in the fight against rootkits? The answer is ―maybe,‖ but definitely ―no‖ if

the fight against rootkits continues to keep going in the direction it has gone until now.

Simply put, anti-rootkit technology has not kept pace with the sophistication of rootkits.

If this trend continues the gap between what is needed in this fight and the capabilities of

rootkits will continue to grow larger. Rootkit detection and eradication tools are almost

without exception not up to the task. Signature-based tools are most inadequate, but even

more effective tools suffer from the problem that they must run on systems in which the

integrity of the processes and files that these tools must examine may possibly be

compromised.

One potential future technology solution that has been widely considered is running

rootkit detection and eradication processes in a virtual environment that cannot be

affected by any rootkit. In theory this is a brilliant solution, but in reality rootkits can

even subvert the integrity of virtual environments. Joanna Rutkowska has developed what

she has termed a completely undetectable rootkit (called ―Blue Pill‖) that evades the

Vista operating system’s integrity-checking during loading unsigned code into the Vista

kernel using AMD’s secure virtual machine to conceal itself (RUTK06),. Even virtual

machines and environments are subject to rootkit-causes integrity compromises; their

potential value in detecting and eradicating rootkits thus appears to be limited.

The best rootkit detection and eradication solution to date is hardware-based. Komoku

has produced a rootkit detection product, the Copilot PCI Card™, a PCI card that has its

own CPU and memory. It inspects the physical memory of systems that are potentially

compromised by rootkits. Because it has its own CPU and memory, its processes cannot

potentially be affected by a rootkit’s subversive mechanisms. The main limitation to this

solution presently is the financial cost, which is high. Hopefully, in time the cost will

come down, as typically has happened with other new technologies.

Another promising and more cost-effective solution that is considerably better than most

detection and eradication solutions available today and that is likely to become even

better in time is Security Event Management (SEM) technology. SEM tools use

sophisticated event correlation algorithms to identify symptoms of a rootkit infection as

are visible on the network. Rootkits may be able to hide themselves on hosts, but they at

various times give indications of their presence on the network, e.g, when the attacker

who installed the rootkit gains backdoor access to the rootkit. Indications such a certain

port on a rootkit-compromised host temporarily listening for input and the presence of

encrypted traffic between an internal and external host after the initial traffic between the

hosts was unencrypted can provide enough information for a SEM’s event correlation

algorithms to detect the presence of a rootkit.

Ultimately, however, the best solution is to build rootkit resistant mechanisms directly

into operating systems and applications. Add-on solutions such as rootkit detection and

eradication tools are invariably less effective than are ones that are built-in from the start.

Operating systems in particular should recognize and halt attempts to engage in integrity-

compromising actions such as those that result in modification of critical kernel data

structures. It is well time for operating system and application vendors to wake up to the

fact that they hold the real key in the fight against rootkits and other kinds of malware.

References

AUSC06 AUSCERT. Eight-percent of new malware defeats anti-virus. Web

posting, 2006.

www.zdnet.com.au/.../soa/Eighty-percent-of-new-malware-defeats-

antivirus/0,130061744,139263949,00.htm

BUST07 Bustamante, P. Rootkits in the mist. Web posting, 2007.

http://research.pandasecurity.com/archive/Rootkits-in-the-mist.aspx

MCAF06 McAfee. McAfee warns about increasing prevalence of rootkits. Web

posting, 2006.

http://www.playfuls.com/news_02100_McAfee_Warns_About_Increasing

_Prevalence_of_Rootkits.html

MICR06 Microsoft, 2006. Windows Malicious Software Removal Tool: Progress

made, trends observed. Web posting, 2006.

www.microsoft.com/downloads/details.aspx?FamilyId=47DDCFA9-

645D-4495-9EDA-92CDE33E99A9

PHIF06 Phifer, L. Rootkits 201: Countermeasures and defenses. Web posting,

2006. http://www.corecom.com/external/livesecurity/rootkits201.htm

SCHU06 Schultz, E.E. Where have viruses and worms gone? New trends in

malware. Computer Fraud and Security. July, 2006, pp. 2 – 7.

SHAH06 Shah, A. Analysis of rootkits: Attack approaches and detection

mechanisms. Web posting, 2006. http://www-

static.cc.gatech.edu/~salkesh/files/RootkitsReport.pdf

TREN06 Trend Micro. The trend of threats today: 2006 annual roundup and 2007

forecast. Web posting, 2006.

http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary

/trend_annualreport06.pdf

http://www.microsoft.com/downloads/details.aspx?FamilyId=47DDCFA9-645D-4495-9EDA-92CDE33E99A9
http://www.microsoft.com/downloads/details.aspx?FamilyId=47DDCFA9-645D-4495-9EDA-92CDE33E99A9

